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Abstract 

Purpose: Maximal heart rate (MHR) plays a crucial role in guiding exercise 

recommendations and monitoring in both clinical and sports contexts. 

Nevertheless, prediction equations designed for adults may not accurately 

predict MHR in youth. This study aims to systematically review and analyze 

the existing evidence on the validity of commonly used age-based MHR 

prediction models across participants of different ages. Methods: The 

inclusion criteria encompassed peer-reviewed articles published in English 

that compared measured and predicted MHR values in male and female 

participants. To gauge the accuracy of age-predicted MHR values, the 

standardized mean difference effect size (ES) was employed. Furthermore, 

predefined moderators were examined to identify potential sources of 

variability. Results: The cumulative findings from 29 effects obtained from 

nine articles demonstrated that prediction equations did not statistically 

significantly differ from zero MHR (ES= 0.24, p = 0.48), while individual 

effects (z = 1.99, p < .0.05) varied across the studies. Subgroup analyses 

indicated that the Fox, Nes and Londeree equations tended to overestimate 

MHR, while the Tanaka, Gelish and Arena equations have better accuracy 

with less mean bias. Conclusion:  Age-based MHR equations vary across the 

different age groups. However, if the use of age-based equations is 

unavoidable, our recommendation is to employ the Tanaka equation, taking 

into account the reported range of error in this study.  
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Introduction 

Maximum heart rate (MHR) is a crucial physiological parameter with various 

applications in sports and clinical settings (Berglund et al., 2019). It 

represents the highest number of heartbeats per minute an individual can 

achieve during intense exercise or stress (Nes et al., 2013). MHR can provide 

valuable information for training, performance assessment, and medical 

evaluation (Chauhan & Kumar, 2023; Dhillon & Malik, 2023a, 2023b; F. A. 

Kumar, 2023; Yadav et al., 2023). It is often used to set exercise intensity in 

endurance training both during traditional endurance exercise and even more 

so during high-intensity interval training. Commonly, the intensity during 

high-intensity training (HIT) is set at 85–95% of HRmax, and the percentage 

of HRmax reached during HIT is important for improving cardiorespiratory 

fitness (Moholdt et al., 2014). The robust and affirmative correlation between 

heart rate and oxygen consumption allows researchers to utilize heart rate as 

a marker of physiological stress, with Maximum Heart Rate (MHR) 

signifying the upper threshold of cardiovascular capacity (Colantonio & 

Peduti Dal Molin Kiss, 2013; Mahon et al., 2010). Heart rates vary between 

individuals of different physical fitness statuses. Generally, untrained 

individuals have high HR values both in rest and maximal physical exertion 

states, when compared to trained individuals (Achten & Jeukendrup, 2003; 
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Cook et al., 2006). Data also indicate that physical training causes reduced 

HRmax as a result of cardiac pump and autonomic nervous system 

adaptations that are made in order to achieve an efficient cardiac output. In 

addition, elevated HR at rest is considered to be an independent predictor of 

mortality in the general population and in subjects with cardiovascular disease 

(Caetano & Alves, 2015; Cook et al., 2006). 

However, since it is not always feasible or desirable to have participants 

perform maximal effort tests in order to determine maximum heart rate 

(MHR), it is often predicted using age-based regression equations. For HR to 

be a valid measure of exercise intensity, we need to know the MHR of the 

individual. In clinical practice, HR is often reported as a percentage of age-

predicted MHR. The traditional formula for age-predicted MHR is 220 – age 

(Fox & Haskell, 1968; Lester et al., 1968). These equations are based on a 

well-established inverse relationship between age and MHR in different 

populations. These models have been developed from diverse populations 

having various kinds of physical and health-related alterations i.e., 

cardiovascular disease (Bruce et al., 1974), Trained runners and cyclist 

(Kasiak et al., 2023), Soccer Players (C. D. Silva et al., 2013), Volleyball 

players (Papadopoulou et al., 2019), children, adolescents and old age 

individuals of both genders (Arena et al., 2016; Machado & Denadai, 2011; 

V. A. P. da Silva et al., 2007), Obese (Heinzmann-Filho et al., 2018), and 

sedentary persons(Sarzynski et al., 2013). 

Accurate determination of MHR is of paramount importance in both clinical 

and athletic settings. It serves as a fundamental parameter for designing 

exercise programs, assessing cardiovascular health, and making informed 

decisions regarding intensity levels during physical activities. Consequently, 

ensuring the reliability of MHR prediction equations is essential for 

optimizing the well-being and performance of individuals across a broad 

spectrum of ages. Therefore, this research aims to bridge the gap between 

existing MHR prediction equations and the diverse populations they are 

applied. By conducting a meta-analysis that includes individuals of all ages, 

we seek to validate and refine these models, ultimately enhancing their 

clinical and practical utility in promoting cardiovascular health, optimizing 

athletic performance, and ensuring safe and effective exercise prescription 

across the lifespan. It was hypothesized that the equations extracted from 

existing literature would demonstrate inaccuracies when predicting maximum 

heart rates in the different aged populations. 

Methods 

This study adopted the criteria implied by the revised PRISMA statement 

(Preferred Reporting Items for Systematic Review and Meta-Analysis) (Page 

et al., 2021).  

Procedure 

Search Strategy 

The electronic database search encompassed PubMed, and Scopus. We 

conducted searches across selected databases, spanning from their inception 

through April 2023. The search query employed the following terms: (valid* 

OR evaluat*) AND (prediction AND equation) AND (max* AND (heart AND 

rate)) AND (young OR youth OR adolescent* OR child* OR adult* OR older 

adult*). The ‘English language’, ‘human studies’, and ‘peer-reviewed’ were 

the limiters used to filter search results. In addition to electronic database 

searches, we conducted manual searches of reference lists in the included 

studies, relevant reviews, and previously published meta-analyses to identify 

any additional reports. We included articles that met the following 

predetermined criteria: (i) they were peer-reviewed; (ii) the full-text article 

was available in English; (iii) they involved healthy human subjects; (iv) no 

special restrictions have been made regarding the age of the participants. The 

studies including participants having different ages i.e., children to older 

adults have been included; (v) they compared maximal heart rate (MHR) 
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measured during an exhaustive incremental exercise test to MHR predicted 

using the Fox, Tanaka or other equations; vi) they provided sufficient 

information to calculate the standardized mean difference effect size (ES) and 

its components, including the means and standard deviations (SDs), standard 

errors, or 95% confidence intervals (CIs) of both measured and predicted 

MHR, as well as the means and SDs, standard errors, or 95% CIs of the 

difference between measured and predicted MHR. 

Methodological study quality and data extraction 

A modified version of the TRIPOD prediction model validation guidelines 

(Heus et al., 2019; Moons et al., 2015) was used to assess the study quality. 

Study quality scores were interpreted as low (≤50%), moderate (50 – 79 %), 

or high (≥80%). See Guidelines (Supplemental Content, SC 1) and scoring 

criteria in online supplemental content (SC 2). Two authors (LS and JPS) 

independently reviewed potentially eligible titles, abstracts, and full-text 

articles identified during the literature search. After the final sample was 

identified, the same two authors extracted study information and coded the 

following variables: sample characteristics (number of subjects (N), age, sex, 

body mass index [BMI], Vo2max), type of exercise test (laboratory or field-

based test), and prediction equation used to estimate MHR, mean and SD of 

predicted and measured MHR. Ten MHR prediction equations (See Table 1) 

have been analyzed, and disagreements were resolved by discussion or by 

consulting a third party (RPA). 

Study outcomes and mean effect size calculation 

Effects Size (ES) was calculated using standardized mean difference which 

was used to quantify the accuracy of age-based prediction equations, defined 

as the mean difference between predicted and measured MHR divided by the 

SD of the differences (Andrade, 2020; Becker, 1988; Rice & Harris, 

2005). The studies containing multiple comparisons and using more than one 

prediction equation (Heinzmann-Filho et al., 2018; Kasiak et al., 2023; C. D. 

Silva et al., 2013; V. A. P. da Silva et al., 2007), the effects were disaggregated 

and analyzed separately. ESs with positive values indicated that the prediction 

equation overestimated measured MHR, while those with negative values 

showed underestimated measured MHR. The magnitude of the absolute value 

of the ES was interpreted as small (≤0.20), medium (0.50), and large (≥0.80) 

(Cohen, 1988). Additionally, we provide the percentage prediction error as a 

supplement to ES in order to better contextualize our findings (Guang et al., 

1995). Consistency across ESs was estimated by Q statistics (Cochran, 1954) 

and transformed into the I2 statistic (and 95% CIs), which gauged the degree 

or extent of heterogeneity. The I2 statistic was interpreted as low (25%), 

moderate (50%), and high (75%) (Higgins et al., 2003; Huedo-Medina et al., 

2006a).  

Moderator analysis and publication bias 

We examined several a priori study-level moderators (MSQ, age, BMI, Vo2 

max, participants, and exercise test type) to determine which factor or 

combination of factors influenced the degree of accuracy between measured 

and predicted MHR (Continuous and categorical moderators are defined in 

SC 5). Each effect was weighted by the inverse variance and examined as a 

potential moderator in univariate analysis with maximum likelihood 

estimation of the random-effects weights (Lipsey & Wilson, 2001). 

Statistically significant univariate models were integrated into a multiple 

moderator model to determine which variables explained unique between 

study variances. 

We visually examined a funnel plot for outliers and asymmetries in the ES 

distribution to identify potential publication or other reporting biases (Sterne 

et al., 2008) as well as performing statistical tests of bias using Begg (Begg 

& Mazumdar, 1994) and Egger(Egger et al., 1997) methods. Additionally, 
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we calculated the fail-safe N+ using random effects, which is the required 

number of unpublished or unretrieved null effects that would diminish the 

significance of the observed effect to a non-significant result (Rosenberg, 

2005; Rosenthal, 1979). Although the fail-safe N+ statistic is not a robust 

method for detecting publication bias, we used it as an additional metric to 

inform our decision as to whether more sophisticated bias assessment 

methods were needed (Rosenberg, 2005). 
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Table 1 Study Design and Subject Characteristics 

studies Participants Exercise Test Type Prediction Equation Age BMI Vo2 max 
N 

(%Female) 

MHR 

PE Predicted Observed 

Mean SD Mean SD 

(C. D. Silva et al., 2013) Soccer Players Soccer Match (F) Fox et al 14 (0.6) - 49.5 (2) 18 (0) 205 0.6 202 8 1.485 
  Soccer Match (F) Tanaka et al 14 (0.6) - 49.5 (2) 18 (0) 198 0.4 202 8 -1.980 

  Soccer Match (F) Nes et al. 14 (0.6) - 49.5 (2) 18 (0) 202 0.4 202 8 0.000 

(Heinzmann-Filho et al., 2018) Obese (CPET) (L) Fox et al 16.8 (1.2) 35.69 (4.7) 26.9 (4.5) 59 (25) 203.2 1.2 190 9.2 6.947 
  (CPET) (L) Tanaka et al 16.8 (1.2) 35.6 (4.7) 26.9 (4.5) 59 (25) 196.3 0.8 190 9.2 3.316 

  (CPET) (L) Gelish et al 16.8 (1.2) 35.6 (4.7) 26.9 (4.5) 59 (25) 195.3 0.8 190 9.2 2.789 

  (CPET) (L) Heinzmann et al 16.8 (1.2) 35.6 (4.7) 26.9 (4.5) 59 (25) 191.9 0.6 190 9.2 1.000 
(Arena et al., 2016) Healthy MET (L) Arena et al 43 (12) 26 (5.4) 36.1(10.6) 4796 (35) 178.3 16 178 14 0.169 

(V. A. P. da Silva et al., 2007) Elderly Healthy GXT (L) Fox et al 67.1 (5.16) 27.68 (3.48) 22.24 (4.93) 93 (100) 152.9 5.1 145.5 12.5 5.086 

  GXT (L) Tanaka et al 67.1 (5.16) 27.68 (3.48) 22.24 (4.93) 93 (100) 161.0 3.9 145.5 12.5 10.653 

(Machado & Denadai, 

2011) 

Healthy Boys PMET (L) Fox et al 12.6 (1.5) 47.3 (14.1) - 69 (0) 207.4 1.5 200.2 8.0 3.596 

  PMET (L) Tanaka et al 12.6 (1.5) 47.3 (14.1) - 69 (0) 199.2 1.1 200.2 8.0 -0.500 

(Kasiak et al., 2023) Trained Runners CPET (L) Nes et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 188.23 5.20 184.60 9.79 1.966 

  CPET (L) Machado et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 189.54 6.50 184.60 9.79 2.676 
  CPET (L) Tanaka et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 183.09 5.68 184.60 9.79 -0.818 

  CPET (L) Fox et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 184.42 8.12 184.60 9.79 -0.098 

  CPET (L) Londeree et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 181.00 5.77 184.60 9.79 -1.950 

  CPET (L) Inbar et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 181.43 5.56 184.60 9.79 -1.717 

  CPET (L) Gellish et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 182.09 5.68 184.60 9.79 -1.360 
  CPET (L) Arena et al 33.58(8.12) 24.04 (2.65) 53.24 (7.12) 4043(16.47) 183.68 5.85 184.60 9.79 -0.498 

(Kasiak et al., 2023) Trained Cyclist CPET (L) Tanaka et al 36.88(9.03) 24.04 (2.65) 51.67 (7.86) 4043(16.47) 182.19 6.32 182.66 10.28 -0.257 

  CPET (L) Fox et al 36.88(9.03) 24.04 (2.65) 51.67 (7.86) 4043(16.47) 183.12 9.03 182.66 10.28 0.252 
  CPET (L) Londeree et al 36.88(9.03) 24.04 (2.65) 51.67 (7.86) 4043(16.47) 180.08 6.42 182.66 10.28 -1.412 

  CPET (L) Fairbarn et al 36.88(9.03) 24.04 (2.65) 51.67 (7.86) 4043(16.47) 177.77 5.69 182.66 10.28 -2.677 

  CPET (L) Arena et al 36.88(9.03) 24.04 (2.65) 51.67 (7.86) 4043(16.47) 182.75 6.50 182.66 10.28 0.049 
(Papadopoulou et al., 2019) Volleyball Players  20 m SRT (F) Fox et al 13.3 (0.7) 21.1 ± 2.2 - 71 (100) 206.7 0.7 199.9 8.6 3.402 

  20 m SRT (F) Tanaka et al 13.3 (0.7) 21.1 ± 2.2 - 71 (100) 197.3 0.6 199.9 8.6 -1.301 

(Sarzynski et al., 2013) Sedentary Persons MET (L) Fox et al 33.8 (13.2) 26.5±5.5 31±8.7 762 (56) 186.2 13.2 184.4 14.2 0.976 
  MET (L) Tanaka et al 33.8 (13.2) 26.5±5.5 31±8.7 762 (56) 184.3 9.2 184.4 14.2 -0.054 

CPET = Cardio pulmonary exercise test, MET = Maximal Exercise Test, GXT = Graded Exercise Test, PMET = progressive maximal exertion test, SRT = shuttle run test, PE = Percentage error.  

(F) = Field Test Type, (L) Laboratory Test Type. Fox et al: 220 – age, Tanaka et al: 208 – (0.7× age),  Nes et al: 211 – (0.64 × age), Heinzmann et al: 200 – (0.48 × age), Machado et al: 218 – 

(0.8 × age), Londeree et al: 206.3 – (0.711 × age), Inbar et al: 205.8 – (0.685 × age), Gellish et al: 207 – (0.7 × age), Arena et al: 209.3 – (0.72 × age), Fairbarn et al: 209.3 – (0.72 × age). 
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Results 

Study selection and methodological Quality 

Our systematic exploration of the literature identified a pool of 151 potentially 

relevant reports. Following the elimination of duplicates, we meticulously 

screened 129 of these reports for their suitability for inclusion. This rigorous 

process ultimately led to the inclusion of nine studies, all of which were published 

between 2007 and 2023. These nine studies provided a wealth of data, 

encompassing more than one comparison each, resulting in a total of 29 distinct 

effects available for our quantitative analysis. For a visual representation of our 

search and selection process, please refer to Figure 1. In terms of the quality of 

the studies included in our meta-analysis, we found that they collectively achieved 

a moderate level of quality, with an average score of 76.97%. Individual scores 

within this range varied between 62.96% and 88.0%. (See SC 3) 

 

Figure 1. Flow chart detailing the systematic search, identification, screening and selection of potential research 

studies (n), and extraction of effects (k) 

Subjects and Study Characteristics 

A total of 11180 (27.45% female) healthy subjects aged from 14 to 67 years (age 

29.61±14.53 years) and having slightly higher fat (BMI 26.31±4.53) were 

included in the study. The body mass index was showing slightly higher (≥25) due 

to the studies included obese (Heinzmann-Filho et al., 2018), older adults (V. A. 

P. da Silva et al., 2007), and sedentary (Sarzynski et al., 2013) participants. The 

rest of the studies included athletes of different disciplines. The capacity of 
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maximal oxygen consumption [43.31±12.20 mL/(kg·min)] of the participants was 

reported in the index of above average. The average predicted MHR value across 

the reviewed effects were varies among the equation’s types, i.e., Fox: 

192.26±19.86 bpm, Tanaka: 187.67±12.98 bpm, Nes: 195.11±9.7 bpm, Gelish: 

186.83±7.34 bpm, Londeree: 180.54±0.65 bpm, Arena: 183.21±6.53 bpm See 

Table 1 for a summary of the studies included in our meta-analysis. Out of the 

total (nine) studies, 8 studies used Fox and Tanaka equations to Predict MHR. 

Some studies used to validate multiple equations. Two studies (Kasiak et al., 2023; 

C. D. Silva et al., 2013)used the Nes Equation, while, Gelish (Heinzmann-Filho 

et al., 2018; Kasiak et al., 2023), Londeree (Kasiak et al., 2023), Arena (Kasiak et 

al., 2023), and four other equations were used simultaneously in the included 

studies. The summary of the MHR prediction equations used in our meta-analysis 

is presented in Table 1. Measured MHR was elicited using various methods of 

incremental exercise tests in the context of laboratory and field settings in all 

studies. However, the specific testing modality varied between studies. Two 

studies used field settings to elicit measured MHR of the participants. Soccer 

match (C. D. Silva et al., 2013) and 20 m shuttle run (Papadopoulou et al., 2019) 

methods were used in field settings.  Seven studies used the laboratory-based 

setting to elicit MHR. Cardiopulmonary exercise test (CPET) (Heinzmann-Filho 

et al., 2018; Kasiak et al., 2023), GXT (V. A. P. da Silva et al., 2007), progressive 

maximal exertion test (PMET) (Machado & Denadai, 2011), maximal exercise 

test (MET) (Arena et al., 2016; Sarzynski et al., 2013) methods were used as 

incremental exercise test to achieve MHR on a motorized treadmill. Subjects’ 

fitness status was also varying among the selected studies. The subjects were 

divided into athletes and non-athlete participants. In athletes, Soccer players (C. 

D. Silva et al., 2013), Runners & Cyclist (Kasiak et al., 2023), and Volleyball 

players (Papadopoulou et al., 2019) were included.  

Outcomes of Prediction Equations 

The cumulative outcomes of 29 effects obtained from nine articles revealed that 

prediction equations, in general, overestimated measured MHR (ES = 0.21, 95% 

CI: 0.08 to 0.34, p = 0.07,  UMD = 1.67, 95% CI: -0.11 ± 3.44 bpm). However, 

this mean ES lacked homogeneity, with Cochran’s Q and the I2 statistic indicating 

that the observed ESs were not consistent across the 29 effects (Q = 3147.77, p < 

.000 and I2 = 99.9%). It should be noted that although the I2 is very high, meta-

analyses with a limited number of studies (<20) may be underpowered to detect 

heterogeneity (Huedo-Medina et al., 2006b). We used subgroup and meta-

regression analyses to explore potential sources of variability.  

Table 2 Summary of Sub-group analysis in the context of standardized mean difference (SMD) 

Equation 
Effect 

Size 

Std. 

Error 
Z 

Sig. (2-

tailed) 

95% Confidence 

Interval 
Heterogeneity Statistics 

Lower Upper Tau2 H2 I2 (%) 

Fox .610 .1057 5.768 <.001 .403 .817 .469 68.377 98.5 

Tanaka .139 .1000 1.391 .164 -.057 .335 .565 221.758 99.5 

Nes .463 .0225 20.572 <.001 .419 .507 .000 1.00 0.00 

Gelish .233 .5624 .414 .679 -.869 1.335 .298 306.275 99.7 

Londeree -.375 .0735 -5.096 <.001 -.519 -.230 .010 21.442 95.3 

Arena -.052 .0623 -.832 .405 -.174 .070 .007 15.66 93.3 

Others -.023 .2304 -.102 .919 -.475 .428 .235 366.318 99.7 

Overall .247 .0673 3.075 .002 .075 .339 .413 405.378 99.8 
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Sub-Group Analysis 

Sub-group analysis depicted that Fox prediction equation overestimated MHR (ES = 0.61, 95% CI: 0.403 to 0.817, p 

< 0.001, UMD = 5.55, 95% CI: 2.197 ± 8.910 bpm). The ES measured through Tanaka equation was not statistically 

significantly different from zero (ES = 0.13, 95% CI: -0.057 to 0.335, p = 0.164, UMD = 1.49, 95% CI: -2.874 ± 5.864 

bpm). Nes equation overestimated MHR (ES = 0.46, 95% CI: 0.419 to 0.507, p < 0.001, UMD = 2.302, 95% CI: -

1.125 ± 5.729 bpm). The ES measured through Gelish equation was not statistically significantly different from zero 

(ES = 0.23, 95% CI: -0.869 to 0.133, p = 0.679, UMD = .954, 95% CI: -3.406 ± 5.314 bpm). Londeree prediction 

equation underestimated MHR (ES = -0.37, 95% CI: -0.519 to -0.230, p < 0.001, UMD = -3.092, 95% CI: -4.092 ± -

2.093 bpm). The ES measured through Arena equation was not statistically significantly different from zero (ES = -

0.023, 95% CI: -0.174 to 0.070, p = 0.405, UMD = -0.417, 95% CI: -1.407 ± 0.573 bpm). The cumulative effect of 

four equations (Silva, APMHR, Machado, & Fairbarn) nominated as ‘other’ was not statistically significantly different 

from zero (ES = -0.023, 95% CI: -0.475 to 0.428, p = 0.919, UMD = -0.220, 95% CI: -3.709 ± 3.269 bpm). Summary 

of Sub-group analysis of standardized mean difference along with Heterogeneity statistics (Table 2)  and 

unstandardized mean differences (UMD) were presented in SC 5. 

Table 3 Summary of Univariate Meta-Regression in terms of Continuous and Categorical Moderators   

Parameter 
Moderator 

Type 
Estimate 

Std. 

Error 
t 

Sig. (2-

tailed) 

R2 

% 

95% Confidence Interval 

Lower Upper 

Age Continuous -0.01 .2914 .638 .529 0% -.412 784 
BMI Continuous .043 .0164 2.631 .015 29.1% .009 .077 

Vo2max Continuous -0.032 .0079 -4.033 <.001 46.1% -.048 -.015 

(Participants) Categorical         
Athletes  -.480 .2155 -2.227 .035 

41.2% 

-.137 1.299 

Obese  .581 .3492 1.664 .108 -.137 1.299 
Sedentary        

(Test Type) Categorical        

Field  -.043 .3449 -.125 .902 
0% 

-.751 .665 
Laboratory        

(Age Group) Categorical        

Children  -.786 .4589 -1.712 .099 

54.6% 

-1.731 .159 
Adolescent  -.577 .4352 -1.325 .197 -1.473 .320 

Adult  -1.286 .3828 -3.358 .003 -2.074 -.497 

Older Adult  0 .     

Level of Sig. 0.05 

Moderator Analysis 

The univariate meta-regression model revealed that in continuous moderators 

(See Table 3), BMI (‘t’= 2.631, p < .001), and Vo2max (‘t’= -4.033, p < .001) 

were significant sources of error in the accuracy of estimated and measured MHR. 

BMI and Vo2max each explained a significant portion of between-study 

variability (R2 values for BMI and Vo2max were 29.1% and 46.1% respectively), 

while age (‘t’= .638, p =529) did not modulate the between-study variability.  

In terms of categorical moderators (See Table 3), participants were categorized 

into Athletes (‘t’= -2.227, p < .001), Obese (‘t’= 1.664, p = .108), and Sedentary 

(redundant parameter). Athlete participants significantly modulated the accuracy 

of predicted vs. measured MHR and explained 42.1% portion of attained 

heterogeneity. Meanwhile, the studies were also categorized on the basis of MHR 

test type i.e., Field (‘t’= -.125, p = .902) vs. laboratory (redundant parameter). The 

test-type moderator model did not explain the significant variation. Significant 

variations have been reported through various age categories, children (‘t’= -

1.712, p = .099), adolescents (‘t’= -1.325, p = .197), Adults (‘t’= -3.358, p < .001), 

Older adult (redundant parameter). A total 54.6% portion of between-study 

variability has been explained by the Age category. 
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Table 4 Publication Bias Measurement 

Test Name value p 

Fail-Safe N 
 

25.000  0.013 
 

Begg and Mazumdar Rank Correlation 
 

0.069  0.616 
 

Egger's Regression 
 

4.318  < .001 
 

Trim and Fill Number of Studies 
 

0.000  . 
 

Note. Fail-safe N Calculation Using the Rosenthal Approach 

Assessment of Publication Bias 

Upon visually inspecting our funnel plot (See Figure 3), it became evident that 

there were some noteworthy data points in our sample's effect size distribution 

that could be potential outliers. Furthermore, we identified signs of publication 

bias through both the Egger test (with a z-score of 4.318 and a p-value of < .001) 

and the Begg test (with τ = 0.069 and a p-value of 0.616) (See Table 4). However, 

it's important to note that interpreting the results of these tests can be challenging 

in small-scale meta-analyses characterized by substantial heterogeneity (Higgins 

& Green, 2008; Sterne et al., 2000). 

Discussion 

This paper has a primary objective of conducting a thorough and systematic 

review, along with an in-depth analysis, of the existing evidence pertaining to the 

accuracy of age-based Maximum Heart Rate (MHR) prediction equations in both 

male and female children, adolescents, and adults. Notably, this systematic review 

and subsequent meta-analysis represent a pioneering effort in evaluating the 

effectiveness of these equations across various studies. In line with contemporary 

methodological standards, this paper goes beyond conventional approaches. It 

presents standardized mean differences between predicted and actual MHR 

values, unstandardized mean differences, and aggregated limits of agreement. 

Furthermore, the paper offers a quantitative examination of potential influencing 

factors, such as age, Body Mass Index (BMI), Vo2max, the specific prediction 

equation employed, and the type of exercise test used. 

The quantitative analysis revealed overall small effects (ES = 0.24) between 

measured and predicted MHR. However, when sub-group analysis was performed 

in terms of different equations a large effect was shown for the Fox equation (ES 

= 0.61), and Nes equation (ES = 0.46). while the Londeree equation showed a 

moderate effect (ES = -0.37). Fox and Nes equations overestimated MHR, while, 

the Londeree equation significantly underestimated MHR in our sample. On the 

other hand, Tanaka (ES = 0.13), Gelish (ES = 0.23), Arena (ES = -0.052) equations 

showed much smaller effect. Similarly, the cumulative effect (ES = -0.023) of five 

other equations was also small. These outcomes suggest that Tanaka, Gelish and 

Arena equations predict MHR more accurately and account for more individual 

variability in our sample than the Fox, Nes, and Londeree equations. A similar 

meta-analysis (Cicone et al., 2019; Nara, Kumar, Rathee, & Kumar, 2022) 

included validation of Fox and Tanaka equation reported a large effect size for the 

Fox equation. The following study concludes that Age-based MHR equations 

derived from adult populations are not applicable to children. The study 

recommended the Tanaka equation if the use of age-based equations cannot be 

avoided (Jangra et al., 2023; D. Kumar et al., 2023; Nara et al., 2023; Nara, 

Kumar, Rathee, Kumar, et al., 2022). However, pubertal status also influences 

sympathetic modulation during exercise to facilitate the development of more 

age-appropriate methods for prescribing exercise intensity. 
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Figure 2. Forest Plot for the 29 effects extracted from the nine studies 
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Figure 3. Funnel Plot. The horizontal axis typically represents the effect size estimates of each individual study in 

terms of Cohen’s d effect size (ES). The vertical axis represents a measure of study precision, which is usually the 

standard error of the effect size. Studies with larger sample sizes or more precise measurements will have smaller 

standard errors and are therefore plotted higher on the vertical axis. 

We examined potential co-variates (moderators, See SC 5) that might influence 

the between-study variability. The chronological age did not modulate the study 

variability. Age as a continuous moderator did not show significant effects, but 

age as a categorical moderator showed significant variation in the obtained 

heterogeneity. The adult age group was revealed as a potential moderator between 

predicted and measured MHR. The results were similar across children, 

adolescents, and older adult age groups in our study. The present study suggested 

that the prediction equation developed on particular age groups is less accurate 

for different age groups, i.e., the age-based MHR equation developed on children 

will not produce accurate MHR for the adult population. BMI and Vo2max of the 

participants also influence the accuracy of the predicted MHR (R2 = BMI: 29.1%, 

Vo2max: 46.1%). Therefore, cardiovascular endurance and body composition 

should be considered during the prediction of MHR.  

Another important moderator was identified as the participant's physical activity 

status (Athlete, Obese, and Sedentary). In the present meta-analysis, the validation 

of the MHR equations have been done on diverse population. Four studies validate 

the MHR equation on athletes (Kasiak et al., 2023; Papadopoulou et al., 2019; C. 

D. Silva et al., 2013), while, another study included Obese individuals 

(Heinzmann-Filho et al., 2018),  and sedentary persons (Sarzynski et al., 2013). 

We examined the participant's characteristics that significantly modulate the 

accuracy of prediction equations. Various methods of laboratory-based 

incremental exercise tests as well as field-based test protocols were adopted by 

the included studies. No significant variation between different test protocols was 

observed in predicting MHR. However, in the literature testing environment 

reported as a potential source of variability, especially testing location and mode 
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of exercise may impact subjects' performance on maximal effort test 

(WILLIFORD et al., 1999). In our study, testing environment or location and 

mode of exercise did not influence the accuracy of predicted MHR respectively. 

Future studies should be designed to determine the influence (if any) testing 

conditions have on MHR. 

Methodological differences present considerable challenges when attempting to 

characterize how adolescents respond to maximum-effort exercise. More 

precisely, there is a lack of agreement on what should be considered sufficient 

secondary criteria for establishing a maximal effort (Armstrong & Welsman, 

1994; Washington et al., 1994). Various criteria and standards have been used 

to quantify the maximum effort (See SC 4) in participants including a soccer 

match (C. D. Silva et al., 2013) with an intensity of 85±3.7% of MHRobtained were 

used in field settings. Plateau in Vo2max (a stable level of HR or leveling-off in 

VO2, defined as an increase < 100 mL·min−1 with growing exercise intensity 

before exercise test termination) (Kasiak et al., 2023), exhaustion or inability to 

maintain the required velocity, respiratory coefficient > 1.10, HRmax> 85% of 

estimated HR (formula: 220‑age) were used to estimate maximal effort 

(Heinzmann-Filho et al., 2018; Karila et al., 2001; Rodrigues et al., 2006). Rating 

of perceived exertion scale ≥18 and voluntary exhaustion (Arena et al., 2016; 

Machado & Denadai, 2011; V. A. P. da Silva et al., 2007) reported by the 

participants during maximal effort. Regrettably, there is a lack of consistent 

application of these criteria, making it challenging to ascertain whether a genuine 

maximal effort was achieved. The inconsistent utilization of these testing criteria 

may contribute to the significant variability observed in effect sizes (ESs). The 

studies especially, used field settings (Papadopoulou et al., 2019; C. D. Silva et 

al., 2013) have not clearly defined criteria for confirming the attainment of a 

maximal effort. 

While conducting this systematic review and meta-analysis, it's important to 

acknowledge certain limitations. This type of review can only assess the existing 

body of research obtained through the search process. Despite our efforts, 

including reaching out to the original authors for any missing or incomplete data 

and conducting both electronic and manual searches beyond the university library 

system, we were restricted to using databases accessible through our institution. 

Moreover, we intentionally employed broad and inclusive keywords to enhance 

the sensitivity of our electronic database search. However, it is worth noting that 

utilizing additional or alternative keywords might have potentially yielded 

different findings. Additionally, our searches were confined to English-language 

publications, which could have excluded relevant studies in other languages. 

Despite these limitations, we have confidence that we identified and included all 

pertinent peer-reviewed articles that met our predefined criteria in this 

comprehensive review. 

Conclusion 

In summary, the Fox and Nes equations overestimated MHR, while the Londeree 

equation underestimated MHR. The average mean difference and 95% confidence 

interval of predicted and measured MHR (See SC 6) by Fox was 5.60 bpm 

(1.47±9.73 bpm), Nes equation shows a less mean difference of 1.52 bpm but 

accounts for more individual variation (-21.25±24.88 bpm). Londeree equation 

underestimated MHR by-3.09 bpm (-9.57±3.39 bpm). Tanaka, Gelish, and Arena 

equations represent less mean bias. Out of the three equations, Tanaka's equation 

accounts for more accuracy and less individual variation. The findings of the study 

suggested the Tanaka equation as an alternative to other equations as it resulted in 

less bias between measured and predicted MHR and a reduced range of error. 
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Second, the study recommends using more robust criteria to determine that a true 

maximal effort is being attained. Implementing these recommendations could 

contribute to the standardization of assessments within populations, potentially 

leading to more accurate guidance in the prescription and monitoring of exercise 

training intensities for children and adolescents. 

Conflict of Interest: No conflict of interest declared among authors. 

References 

 

Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring: applications and limitations. Sports Medicine, 33, 517–

538. 

Andrade, C. (2020). Mean difference, standardized mean difference (SMD), and their use in meta-analysis: as simple 

as it gets. The Journal of Clinical Psychiatry, 81(5), 11349. 

Arena, R., Myers, J., & Kaminsky, L. A. (2016). Revisiting age-predicted maximal heart rate: Can it be used as a valid 

measure of effort? American Heart Journal, 173, 49–56. 

Armstrong, N., & Welsman, J. R. (1994). Assessment and interpretation of aerobic fitness in children and adolescents. 

Exercise and Sport Sciences Reviews, 22(1), 435–476. 

Becker, B. J. (1988). Synthesizing standardized mean‐change measures. British Journal of Mathematical and 

Statistical Psychology, 41(2), 257–278. 

Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. 

Biometrics, 1088–1101. 

Berglund, I. J., Sørås, S. E., Relling, B. E., Lundgren, K. M., Kiel, I. A., & Moholdt, T. (2019). The relationship 

between maximum heart rate in a cardiorespiratory fitness test and in a maximum heart rate test. Journal of 

Science and Medicine in Sport, 22(5), 607–610. https://doi.org/https://doi.org/10.1016/j.jsams.2018.11.018 

Bruce, R. A., Fisher, L. D., Cooper, M. N., & Gey, G. O. (1974). Separation of effects of cardiovascular disease and 

age on ventricular function with maximal exercise. The American Journal of Cardiology, 34(7), 757–763. 

Caetano, J., & Alves, J. D. (2015). Heart rate and cardiovascular protection. European Journal of Internal Medicine, 

26(4), 217–222. 

Chauhan, B. S., & Kumar, S. (2023). Impact of physical training on aerobic capacity on under-graduate students. 

Sports Science & Health Advances, 1(01), 39–42. 

Cicone, Z. S., Holmes, C. J., Fedewa, M. V, MacDonald, H. V, & Esco, M. R. (2019). Age-based prediction of maximal 

heart rate in children and adolescents: A systematic review and meta-analysis. Research Quarterly for Exercise 

and Sport, 90(3), 417–428. 

Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101–129. 

Cohen, J. (1988). Statistical power analysis for the behavioural sciences. 2nd edn. Hillsdale, NJ: Lawrence Erlbaum. 

Colantonio, E., & Peduti Dal Molin Kiss, M. A. (2013). Is the HRmax= 220-age equation valid to prescribe exercise 

training in children? Journal of Exercise Physiology Online, 16(1). 

Cook, S., Togni, M., Schaub, M. C., Wenaweser, P., & Hess, O. M. (2006). High heart rate: a cardiovascular risk 

factor? European Heart Journal, 27(20), 2387–2393. 

Dhillon, S. K., & Malik, I. (2023a). A comparative study of muscular strength among boxers and wrestlers. Sports 

Science & Health Advances, 1(01), 14–15. 



E-ISSN: 2583-8296                                     vol. 1, No. 2, Dec. 2023                DOI:10.60081/SSHA.1.2.2023.112-127                                                                

125 
 

Dhillon, S. K., & Malik, I. (2023b). A comparative study of muscular strength among boxers and wrestlers. Sports 

Science & Health Advances, 1(01), 14–15. 

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical 

test. Bmj, 315(7109), 629–634. 

Fox, S. M., & Haskell, W. L. (1968). Physical activity and the prevention of coronary heart disease. Bulletin of the 

New York Academy of Medicine, 44(8), 950. 

Guang, W., Baraldo, M., & Furlanut, M. (1995). Calculating percentage prediction error: a user’s note. 

Pharmacological Research, 32(4), 241–248. 

Heinzmann-Filho, J. P., Zanatta, L. B., Vendrusculo, F. M., Silva, J. S. da, Gheller, M. F., Campos, N. E., Oliveira, M. 

da S., Feoli, A. M. P., Gustavo, A. da S., & Donadio, M. V. F. (2018). Maximum heart rate measured versus 

estimated by different equations during the cardiopulmonary exercise test in obese adolescents. Revista Paulista 

de Pediatria, 36, 309–314. 

Heus, P., Damen, J. A. A. G., Pajouheshnia, R., Scholten, R. J. P. M., Reitsma, J. B., Collins, G. S., Altman, D. G., 

Moons, K. G. M., & Hooft, L. (2019). Uniformity in measuring adherence to reporting guidelines: the example 

of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open, 9(4), e025611. 

Higgins, J. P. T., & Green, S. (2008). Cochrane handbook for systematic reviews of interventions. 

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. 

Bmj, 327(7414), 557–560. 

Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006a). Assessing heterogeneity in meta-

analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193. 

Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006b). Assessing heterogeneity in meta-

analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193. 

Jangra, P., Kumar, P., & Nara, K. (2023). Level and associated factors with physical activity among Indian public 

school teachers. Health, Sport, Rehabilitation, 9(3). https://doi.org/10.58962/HSR.2023.9.3.6-23 

Karila, C., de Blic, J., Waernessyckle, S., Benoist, M.-R., & Scheinmann, P. (2001). Cardiopulmonary exercise testing 

in children: an individualized protocol for workload increase. Chest, 120(1), 81–87. 

Kasiak, P. S., Wiecha, S., Cieśliński, I., Takken, T., Lach, J., Lewandowski, M., Barylski, M., Mamcarz, A., & Śliż, 

D. (2023). Validity of the maximal heart rate prediction models among Runners and Cyclists. Journal of Clinical 

Medicine, 12(8), 2884. 

Kumar, D., Dhull, S., Nara, K., & Kumar, P. (2023). Determining the optimal duration of plyometric training for 

enhancing vertical jump performance: a systematic review and meta-analysis. Health, Sport, Rehabilitation, 

9(3). https://doi.org/10.58962/HSR.2023.9.3.118-133 

Kumar, F. A. (2023). The BMI analysis among Kashmir valley students from urban and rural areas. Sports Science & 

Health Advances, 1(01), 1–4. 

Lester, M., Sheffield, L. T., Trammell, P., & Reeves, T. J. (1968). The effect of age and athletic training on the maximal 

heart rate during muscular exercise. American Heart Journal, 76(3), 370–376. 

https://doi.org/https://doi.org/10.1016/0002-8703(68)90233-0 

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. SAGE publications, Inc. 

Machado, F. A., & Denadai, B. S. (2011). Validity of maximum heart rate prediction equations for children and 

adolescents. Arquivos Brasileiros de Cardiologia, 97, 136–140. 



E-ISSN: 2583-8296                                     vol. 1, No. 2, Dec. 2023                DOI:10.60081/SSHA.1.2.2023.112-127                                                                

126 
 

Mahon, A. D., Marjerrison, A. D., Lee, J. D., Woodruff, M. E., & Hanna, L. E. (2010). Evaluating the Prediction of 

Maximal Heart Rate in Children and Adolescents. Research Quarterly for Exercise and Sport, 81(4), 466–471. 

https://doi.org/10.1080/02701367.2010.10599707 

Moholdt, T., Madssen, E., Rognmo, Ø., & Aamot, I. L. (2014). The higher the better? Interval training intensity in 

coronary heart disease. Journal of Science and Medicine in Sport, 17(5), 506–510. 

https://doi.org/https://doi.org/10.1016/j.jsams.2013.07.007 

Moons, K. G. M., Altman, D. G., Reitsma, J. B., Ioannidis, J. P. A., Macaskill, P., Steyerberg, E. W., Vickers, A. J., 

Ransohoff, D. F., & Collins, G. S. (2015). Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of Internal Medicine, 

162(1), W1–W73. https://doi.org/10.7326/M14-0698 

Nara, K., Kumar, P., Kumar, R., & Singh, S. (2023). Normative reference values of grip strength, the prevalence of 

low grip strength, and factors affecting grip strength values in Indian adolescents. Journal of Physical Education 

and Sport, 23(6). https://doi.org/10.7752/jpes.2023.06167 

Nara, K., Kumar, P., Rathee, R., & Kumar, J. (2022). The compatibility of running-based anaerobic sprint test and 

Wingate anaerobic test: a systematic review and meta-analysis. Pedagogy of Physical Culture and Sports, 26(2). 

https://doi.org/10.15561/26649837.2022.0208 

Nara, K., Kumar, P., Rathee, R., Kumar, S., Ahlawat, R. P., Sharma, J., & Singh, S. (2022). Grip strength performance 

as a determinant of body composition, muscular strength and cardiovascular endurance. Journal of Physical 

Education and Sport, 22(7). https://doi.org/10.7752/jpes.2022.07203 

Nes, B. M., Janszky, I., Wisløff, U., Støylen, A., & Karlsen, T. (2013). Age-predicted maximal heart rate in healthy 

subjects: The HUNT Fitness Study. Scandinavian Journal of Medicine & Science in Sports, 23(6), 697–704. 

https://doi.org/https://doi.org/10.1111/j.1600-0838.2012.01445.x 

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. 

M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., 

Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated 

guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 

Papadopoulou, S. D., Papadopoulou, S. K., Alipasali, F., Hatzimanouil, D., Rosemann, T., Knechtle, B., & Nikolaidis, 

P. T. (2019). Validity of prediction equations of maximal heart rate in physically active female adolescents and 

the role of maturation. Medicina, 55(11), 735. 

Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law 

and Human Behavior, 29, 615–620. 

Rodrigues, A. N., Perez, A. J., Carletti, L., Bissoli, N. S., & Abreu, G. R. (2006). Maximum oxygen uptake in 

adolescents as measured by cardiopulmonary exercise testing: a classification proposal. Jornal de Pediatria, 82, 

426–430. 

Rosenberg, M. S. (2005). The file‐drawer problem revisited: A general weighted method for calculating fail‐safe 

numbers in meta‐analysis. Evolution, 59(2), 464–468. 

Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638. 

Sarzynski, M. A., Rankinen, T., Earnest, C. P., Leon, A. S., Rao, D. C., Skinner, J. S., & Bouchard, C. (2013). Measured 

maximal heart rates compared to commonly used age‐based prediction equations in the heritage family study. 

American Journal of Human Biology, 25(5), 695–701. 

Silva, C. D., Cerqueira, M. S., Moreira, D. G., & Marins, J. C. B. (2013). Reliability of maximum heart rate in match’s 

and comparison with predicted in young soccer players. Revista Andaluza de Medicina Del Deporte, 6(4), 129–

134. 



E-ISSN: 2583-8296                                     vol. 1, No. 2, Dec. 2023                DOI:10.60081/SSHA.1.2.2023.112-127                                                                

127 
 

Silva, V. A. P. da, Bottaro, M., Justino, M. A., Ribeiro, M. M., Lima, R. M., & Oliveira, R. J. de. (2007). Maximum 

heart rate in Brazilian elderly women: comparing measured and predicted values. Arquivos Brasileiros de 

Cardiologia, 88, 314–320. 

Sterne, J. A. C., Egger, M., & Moher, D. (2008). Addressing reporting biases. Cochrane Handbook for Systematic 

Reviews of Interventions: Cochrane Book Series, 297–333. 

Sterne, J. A. C., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: power of statistical 

tests and prevalence in the literature. Journal of Clinical Epidemiology, 53(11), 1119–1129. 

Washington, R. L., Bricker, J. T., Alpert, B. S., Daniels, S. R., Deckelbaum, R. J., Fisher, E. A., Gidding, S. S., Isabel-

Jones, J., Kavey, R. E., & Marx, G. R. (1994). Guidelines for exercise testing in the pediatric age group. From 

the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the 

Young, the American Heart Association. Circulation, 90(4), 2166–2179. 

WILLIFORD, H. N., SCHARFF-OLSON, M., DUEY, W. J., PUGH, S., & BARKSDALE, J. M. (1999). Physiological 

status and prediction of cardiovascular fitness in highly trained youth soccer athletes. The Journal of Strength 

& Conditioning Research, 13(1), 10–15. 

Yadav, R., Sharma, P., & Kumar, R. (2023). Importance of information technology in Physical Education. Sports 

Science & Health Advances, 1(01), 10–13. 

  

 

 


